幽灵资源网 Design By www.bzswh.com
在迁移学习finetune时我们通常需要冻结前几层的参数不参与训练,在Pytorch中的实现如下:
class Model(nn.Module): def __init__(self): super(Transfer_model, self).__init__() self.linear1 = nn.Linear(20, 50) self.linear2 = nn.Linear(50, 20) self.linear3 = nn.Linear(20, 2) def forward(self, x): pass
假如我们想要冻结linear1层,需要做如下操作:
model = Model() # 这里是一般情况,共享层往往不止一层,所以做一个for循环 for para in model.linear1.parameters(): para.requires_grad = False # 假如真的只有一层也可以这样操作: # model.linear1.weight.requires_grad = False
最后我们需要将需要优化的参数传入优化器,不需要传入的参数过滤掉,所以要用到filter()函数。
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1)
其它的博客中都没有讲解filter()函数的作用,在这里我简单讲一下有助于更好的理解。
filter(function, iterable)
- function: 判断函数
- iterable: 可迭代对象
filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。
该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。
filter()函数将requires_grad = True的参数传入优化器进行反向传播,requires_grad = False的则被过滤掉。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。