幽灵资源网 Design By www.bzswh.com
相关分析(correlation analysis)
研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。
线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度;
r>0,线性正相关;r<0,线性负相关;
r=0,两个变量之间不存在线性关系,并不代表两个变量之间不存在任何关系。
相关分析函数
DataFrame.corr()
Series.corr(other)
函数说明:
如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度
如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度
返回值:
DataFrame调用;返回DataFrame
Series调用:返回一个数值型,大小为相关度
import numpy
import pandas
data = pandas.read_csv(
'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
bins = [
min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
'20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
data['年龄分层'] = pandas.cut(
data.年龄,
bins,
labels=labels
)
ptResult = data.pivot_table(
values=['年龄'],
index=['年龄分层'],
columns=['性别'],
aggfunc=[numpy.size]
File "<ipython-input-1-ae921a24967f>", line 25
aggfunc=[numpy.size]
^
SyntaxError: unexpected EOF while parsing
import numpy
import pandas
data = pandas.read_csv(
'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
bins = [
min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
'20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
data['年龄分层'] = pandas.cut(
data.年龄,
bins,
labels=labels
)
ptResult = data.pivot_table(
values=['年龄'],
index=['年龄分层'],
columns=['性别'],
aggfunc=[numpy.size]
)
ptResult
Out[4]:
size
年龄
性别 女 男
年龄分层
20岁以及以下 111 1950
21岁到30岁 2903 43955
31岁到40岁 735 7994
41岁以上 567 886
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
