约定:
import pandas as pd import numpy as np from numpy import nan as NaN
填充缺失数据
fillna()是最主要的处理方式了。
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]) df1
代码结果:
0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN
用常数填充:
df1.fillna(100)
代码结果:
0 1 2 0 1.0 2.0 3.0 1 100.0 100.0 2.0 2 100.0 100.0 100.0 3 8.0 8.0 100.0
通过字典填充不同的常数:
df1.fillna({0:10,1:20,2:30})
代码结果:
0 1 2 0 1.0 2.0 3.0 1 10.0 20.0 2.0 2 10.0 20.0 30.0 3 8.0 8.0 30.0
传入inplace=True直接修改原对象:
df1.fillna(0,inplace=True) df1
代码结果:
0 1 2 0 1.0 2.0 3.0 1 0.0 0.0 2.0 2 0.0 0.0 0.0 3 8.0 8.0 0.0
传入method=” “改变插值方式:
df2=pd.DataFrame(np.random.randint(0,10,(5,5))) df2.iloc[1:4,3]=NaN;df2.iloc[2:4,4]=NaN df2
代码结果:
0 1 2 3 4 0 6 6 2 4.0 1.0 1 4 7 0 NaN 5.0 2 6 5 5 NaN NaN 3 1 9 9 NaN NaN 4 4 8 1 5.0 9.0
df2.fillna(method='ffill')#用前面的值来填充
代码结果:
0 1 2 3 4 0 6 6 2 4.0 1.0 1 4 7 0 4.0 5.0 2 6 5 5 4.0 5.0 3 1 9 9 4.0 5.0 4 4 8 1 5.0 9.0
传入limit=” “限制填充个数:
df2.fillna(method='bfill',limit=2)
代码结果:
0 1 2 3 4 0 6 6 2 4.0 1.0 1 4 7 0 NaN 5.0 2 6 5 5 5.0 9.0 3 1 9 9 5.0 9.0 4 4 8 1 5.0 9.0
传入axis=” “修改填充方向:
df2.fillna(method="ffill",limit=1,axis=1)
代码结果:
0 1 2 3 4 0 6.0 6.0 2.0 4.0 1.0 1 4.0 7.0 0.0 0.0 5.0 2 6.0 5.0 5.0 5.0 NaN 3 1.0 9.0 9.0 9.0 NaN 4 4.0 8.0 1.0 5.0 9.0
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com