幽灵资源网 Design By www.bzswh.com
如下所示:
# u [32,30,200] # u_logits [400,32,30] q_j_400 = [] for j in range(400): q_j_400.append(tf.squeeze(tf.matmul(tf.transpose(u,[0,2,1]),tf.expand_dims(tf.nn.softmax(u_logits[j]),-1)),[2])) # tf.matmul [32,200,30],[32,30,1] test_result = tf.stack(q_j_400) test_result = tf.transpose(test_result,[1,0,2])
可以通过tf.tile实现更高速的版本
# u [32,30,200] # u_logits [32,400,30] u_tile = tf.tile(tf.expand_dims(u,1),[1,400,1,1]) u_logits = tf.expand_dims(tf.nn.softmax(u_logits,-1),-1) test_result = tf.reduce_sum(u_logits * u_tile,-2) # [32,400,30,1]*[32,400,30,200]
以上这篇tensorflow 用矩阵运算替换for循环 用tf.tile而不写for的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
幽灵资源网 Design By www.bzswh.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
幽灵资源网 Design By www.bzswh.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。